Skip to main content

Smart new nanoparticle makes good drugs brilliant

Posted 11th March, 2018

Watch

A super-charged nanoparticle with truck-like power and GPS-style precision is poised to change the way medication is delivered to sick Australians.

Scientists at Heart Research Institute in Sydney have engineered multifunctional nanoparticles that can effectively work as ‘nanocarriers’, hauling a wide range of molecules including drugs or genetic material, to exactly where it needs to go in the body.

The breakthrough, published in the journal ACS Applied Nano Materials, significantly improves on current nanotechnologies, which are too costly, complicated and time-consuming to be easily translated into use in the clinic.

The technology is vastly superior to widely-used conventional therapies like chemotherapy, with lead scientist Dr Miguel Santos likening the particles, dubbed nanoP3, to a modern big rig with a built-in satellite navigation system.

“If you think of conventional therapies like chemotherapy as a blind cyclist trying to find its way, then our nanocarrier is a truck. And not just any truck, but one with heavy haulage capabilities and powerful GPS tracking,” says Dr Santos, a postdoctoral researcher in HRI’s Applied Materials Group led by Dr Steven Wise. “Unlike chemo, our technology has the potential to deliver large quantities of the drug exactly where it needs to go and nowhere else, all without costing any more. With that kind of result, the potential for it to change the drug delivery landscape is huge.”

Multifunctional nanoparticles hold great promise in improving imaging, diagnostics and treatment of a great number of clinical conditions, the researcher explains. They can enhance effectiveness, reduce toxicity and minimise side effects associated with conventional treatments.

“A single nanoparticle may carry a cocktail of molecules made of therapeutic agents like drugs, proteins or genetic materials, as well as targeting and imaging agents all in the same nano structure,” Dr Santos says. “By combining the therapeutic agents together with molecules that recognise the targeted cells or organs, the treatment dose can be significantly lowered, reducing also the associated side effects as healthy cells are less affected.” 

Give

Every donation to the Heart Research Institute is an investment into the lives of millions.

Help us to make a long-lasting difference by donating now.